【寄稿】「解散権」への不信が噴出 自己都合の運用見直すべし!=木下寿国<br />

9 hours 43 minutes ago
 高市早苗首相の自己都合解散で首相の「解散権」への不信が噴出している。首相は高支持率のうちに解散して議席を確保し、党内基盤の強化を図ろうとしている。しかしそれはとても解散の大義と呼べるようなものではない。 さらに統一教会との関連隠しも疑われ、予算審議もすっ飛ばしてのいきなりの解散には新聞各紙は強く反発。発表の翌日には「時の首相が与党に有利なタイミングで衆院を解散できる現在の運用を見直すべきだ」「『大義なき解散』が繰り返されぬよう、解散権のあり方も、衆院選で議論してもらいたい」..
JCJ

【おすすめ本】友寄 英隆『人間とAI──社会はどう変わるか』―科学的社会主義の立場から AIとの対応を考える=栩木 誠(元日経新聞編集委員)

1 day 7 hours ago
 レストランに行くとロボットが店内を駆け巡り、インターネットで用語検索をすると生成AIによる解説が登場する。今や私たちの生活の至るところに、AIが浸透している。「AIが透明性、管理、運営などに使えないようにする」とか「その脅威を絶対視する風潮が強い」なか、支配的にAIの発展を身に着け、AIに負けぬようデジタルファシズムに悪用する懸念も深まる。 私たちが、このAIといかに向き合うか、真剣にいかに、いま極めて重要に考えるべき時代が到来している。理論的AI論や、体験的AI論、社会的..
JCJ

[B] 総選挙始まる 各紙の社説、目立つ高市政権への危惧と警戒感

1 day 23 hours ago
1月23日、衆院本会議で国会が解散された。各紙がどう報じ、社説はどう論じたか。24日朝刊を繰ってみた。今回の解散、そして高市総選挙の評価はきわめて悪い。手元にある東京新聞一面は、横抜き一段で「くらし後回し改選」「予算犠牲、大義見えず」とあった。各紙の記事、コラム、社説などでは、「今回の高市解散が持つ将来への日本の政治のあり方についての不安」を懸念する姿勢が強い。首相の解散権への疑問、総選挙に自らの白紙委任をもとめる勘違い、など強権政治への自身の要求を隠さない高市政治の危険性を感じとっていると読める。(大野和興)
日刊ベリタ

Search Engines, AI, And The Long Fight Over Fair Use

2 days ago

We're taking part in Copyright Week, a series of actions and discussions supporting key principles that should guide copyright policy. Every day this week, various groups are taking on different elements of copyright law and policy, and addressing what's at stake, and what we need to do to make sure that copyright promotes creativity and innovation.

Long before generative AI, copyright holders warned that new technologies for reading and analyzing information would destroy creativity. Internet search engines, they argued, were infringement machines—tools that copied copyrighted works at scale without permission. As they had with earlier information technologies like the photocopier and the VCR, copyright owners sued.

Courts disagreed. They recognized that copying works in order to understand, index, and locate information is a classic fair use—and a necessary condition for a free and open internet.

Today, the same argument is being recycled against AI. It’s whether copyright owners should be allowed to control how others analyze, reuse, and build on existing works.

Fair Use Protects Analysis—Even When It’s Automated

U.S. courts have long recognized that copying for purposes of analysis, indexing, and learning is a classic fair use. That principle didn’t originate with artificial intelligence. It doesn’t disappear just because the processes are performed by a machine.

Copying that works in order to understand them, extract information from them, or make them searchable is transformative and lawful. That’s why search engines can index the web, libraries can make digital indexes, and researchers can analyze large collections of text and data without negotiating licenses from millions of rightsholders. These uses don’t substitute for the original works; they enable new forms of knowledge and expression.

Training AI models fits squarely within that tradition. An AI system learns by analyzing patterns across many works. The purpose of that copying is not to reproduce or replace the original texts, but to extract statistical relationships that allow the AI system to generate new outputs. That is the hallmark of a transformative use. 

Attacking AI training on copyright grounds misunderstands what’s at stake. If copyright law is expanded to require permission for analyzing or learning from existing works, the damage won’t be limited to generative AI tools. It could threaten long-standing practices in machine learning and text-and-data mining that underpin research in science, medicine, and technology. 

Researchers already rely on fair use to analyze massive datasets such as scientific literature. Requiring licenses for these uses would often be impractical or impossible, and it would advantage only the largest companies with the money to negotiate blanket deals. Fair use exists to prevent copyright from becoming a barrier to understanding the world. The law has protected learning before. It should continue to do so now, even when that learning is automated. 

A Road Forward For AI Training And Fair Use 

One court has already shown how these cases should be analyzed. In Bartz v. Anthropic, the court found that using copyrighted works to train an AI model is a highly transformative use. Training is a kind of studying how language works—not about reproducing or supplanting the original books. Any harm to the market for the original works was speculative. 

The court in Bartz rejected the idea that an AI model might infringe because, in some abstract sense, its output competes with existing works. While EFF disagrees with other parts of the decision, the court’s ruling on AI training and fair use offers a good approach. Courts should focus on whether training is transformative and non-substitutive, not on fear-based speculation about how a new tool could affect someone’s market share. 

AI Can Create Problems, But Expanding Copyright Is the Wrong Fix 

Workers’ concerns about automation and displacement are real and should not be ignored. But copyright is the wrong tool to address them. Managing economic transitions and protecting workers during turbulent times may be core functions of government, but copyright law doesn’t help with that task in the slightest. Expanding copyright control over learning and analysis won’t stop new forms of worker automation—it never has. But it will distort copyright law and undermine free expression. 

Broad licensing mandates may also do harm by entrenching the current biggest incumbent companies. Only the largest tech firms can afford to negotiate massive licensing deals covering millions of works. Smaller developers, research teams, nonprofits, and open-source projects will all get locked out. Copyright expansion won’t restrain Big Tech—it will give it a new advantage.  

Fair Use Still Matters

Learning from prior work is foundational to free expression. Rightsholders cannot be allowed to control it. Courts have rejected that move before, and they should do so again.

Search, indexing, and analysis didn’t destroy creativity. Nor did the photocopier, nor the VCR. They expanded speech, access to knowledge, and participation in culture. Artificial intelligence raises hard new questions, but fair use remains the right starting point for thinking about training.

Joe Mullin

【経済】サナエノミクスに市場が警告! 国債頼み 薄氷の財政 黒字化〝命綱〟手放すな 怖い日本版トラスショック=志田義寧

2 days 8 hours ago
 高市早苗首相が掲げる経済政策「サナエノミクス」に対して、市場が警告を発している。ドル/円は一時157円台と10カ月ぶりの円安水準をつけたほか、ユーロ/円は1999年のユーロ発足以来初の181円台に乗せた。いずれも円売りに起因しており、その背景にあるのが財政悪化懸念だ。高市首相は「責任ある積極財政」を掲げているが、経済成長と財政の持続可能性という「2つの責任」のうち、財政の持続可能性に関して市場は疑念を拭えずにいる。●バラマキ補正 政府は11月28日、25年度補正予算案を閣議..
JCJ

[B] 「アメリカ建国250年」【西サハラ最新情報】  平田伊都子

2 days 9 hours ago
今年に入って、アメリカ巡りの豪華クルーズ船コマーシャルを、<アメリカ建国250年を祝して>と銘打ち、カーニバル・クルーズ・ラインとかアメリカン・クルーズ・ラインなどの大手クルーズ会社が流し始めました。 奴隷船を連想させる船旅が嫌いなので気に留めなかったのですが、ラジオシテイ―のライン・ダンスやニューオルリンズのストリート・ジャズに曳かれて、覗いてみました。 誇大宣伝のアメリカがうつコマーシャルは、ド派手で豪華ムードだけど、、嘘くさい! 料金を検索したら、「アメリカ建国250周年を記念するクルーズの具体的な料金は公表されていません」だって、、ヤッパリ、、
日刊ベリタ