JVN: Growatt製Cloud portalにおける複数の脆弱性
JVN: Lantronix製Xportにおける重要な機能に対する認証の欠如の脆弱性
JVN: National Instruments製LabVIEWにおける境界外書き込みの脆弱性
JVN: Delta Electronics製COMMGRにおける暗号論的強度が不十分なPRNGの使用の脆弱性
JVN: 複数のABB製M2M Gatewayのコンポーネントにおける複数の脆弱性
レイバーネットTV(4/23)案内 : 生きていく逞しさ! ボリビアの映画集団「ウカマウ」の衝撃
小野政美:「日本学術会議特殊法人化法案」について国会に修正を求める決議案と「声明」を採択!
Weekly Report: 複数のマイクロソフト製品に脆弱性
機械受注統計調査報告(令和7年2月実績)
安心・安全なメタバースの実現に関する研究会(第13回)開催案内
情報通信審議会 情報通信技術分科会 IPネットワーク設備委員会(第84回)
消費者保護ルールの在り方に関する検討会(第65回)
利用者情報に関するワーキンググループ(第23回) 開催案内
「オンラインカジノに係るアクセス抑止の在り方に関する検討会」の開催
総務大臣に対する審査の申立て
オンラインカジノに係るアクセス抑止の在り方に関する検討会(第1回)開催案内
第20回独立行政法人評価制度委員会 会計基準等部会
第31回共同ワーキング・チーム
EFF Urges Court to Avoid Fair Use Shortcuts in Kadrey v. Meta Platforms
EFF has filed an amicus brief in Kadrey v. Meta, one of the many ongoing copyright lawsuits against AI developers. Most of the AI copyright cases raise an important new issue: whether the copying necessary to train a generative AI model is a non-infringing fair use.
Kadrey, however, attempts to side-step fair use. The plaintiffs—including Sarah Silverman and other authors—sued Meta for allegedly using BitTorrent to download “pirated” copies of their books to train Llama, a large language model. In other words, their legal claims challenge how Meta obtained the training materials, not what it did with them.
But some of the plaintiffs’ arguments, if successful, could harm AI developers’ defenses in other cases, where fair use is directly at issue.
How courts decide this issue will profoundly shape the future of this transformative technology, including its capabilities, its costs, and whether its evolution will be shaped by the democratizing forces of the open market or the whims of an oligopoly.
A question this important deserves careful consideration on a full record—not the hyperbolic cries of “piracy” and the legal shortcuts that the plaintiffs in this case are seeking. As EFF explained to the court, the question of whether fair use applies to training generative AI is far too important to decide based on Kadrey’s back-door challenge.
And, as EFF explained, whether a developer can legally train an AI on a wide variety of creative works shouldn’t turn on which technology they used to obtain those materials. As we wrote in our brief, the “Court should not allow the tail of Meta’s alleged BitTorrent use to wag the dog of the important legal questions this case presents. Nor should it accept Plaintiffs’ invitation to let hyperbole about BitTorrent and 'unmitigated piracy' derail the thoughtful and fact-specific fair use analysis the law requires.”
We also urged the court to reject the plaintiffs’ attempt to create a carve out in copyright law for copies obtained using “BitTorrent.”
This dangerous argument seeks to categorically foreclose the possibility that even the most transformative, socially beneficial uses—such as AI training—could be fair use.
As EFF explained in its brief, adopting an exemption from the flexible, fact-specific fair use analysis for “BitTorrent,” “internet piracy,” “P2P downloading,” or something else, would defeat the purpose of the fair use doctrine as a safeguard for the application of copyright law to new technologies.